Saturday, January 25, 2020

Siddharthas Stages Analysis

Siddharthas Stages Analysis Siddhartha Tries to Learn Enlightenment Through Teachers Siddhartha started his life a Brahman, declared to be a special gifted Brahman from birth, extremely eager to attend teachers lessons to becoming enlightened on his path to total enlightenment. He had gone to his father when he was a young Brahman and learned to the capacity of the teachers knowledge. Though he believed hed exhausted his teaching at his home, he was not satisfied and requested from his father to allow him to leave to travel with the Samanas, throwing away any and everything that was handed to him as a noble man. His father was immediately furious upon request and denied him. Siddhartha responded by standing for a day, in the same position, unrelenting, to show he had made his mind up and he was serious about the decision. His father, though hesitant, saw the commitment he showed and agreed to let Siddhartha leave with the Samanas. He left to learn with the traveling monks their teaching of asceticism, a rejection of the body and physical desire. Siddhartha adjusts qu ickly because of the patience and discipline he learned in the Brahmin tradition. He learns from the Samanas how to free himself from the traditional trappings of life, losing the desire for; property, clothing, sexuality, and any sustenance except that required to survive. He thinks to find enlightenment, he must eliminate his Self, and successfully does so, renouncing the pleasures of the world. Siddhartha grows tired of the path of self-denial and sees that the oldest members of the Samanas have yet to attain true spiritual enlightenment, so just as he and his follower and best friend Govinda did before with the Brahmins, they must move on to another teacher. At this time, the monks begin hearing of and spreading talk of a new holy man named Gotama the Buddha who is said to have attained the total spiritual enlightenment called, Nirvana. Govinda convinces Siddhartha they should seek out Gotama. They inform the leader of the Samanas of their decision, in which he responds in a dis pleased manner, but is silenced by Siddhartha when he gives him an almost hypnotizing gaze to silence his disapproval. Siddhartha and Govinda find the camp of Gotamas followers and are welcomed. Its not long before Siddhartha identifies Gotama as a monk with an aura around him, and he and Govinda are instructed in the Eightfold Path, the four main points and other aspects of Buddhism. Govinda is convinced into joining Gotama as his follower while Siddhartha still had doubts, and notices a flaw (or contradiction) in Gotamas teaching: how can one embrace the unity of all things as the Buddha asks, if they are also told to overcome the physical world. Siddhartha concludes he must go, and leave Govinda, upon his request, to find the answers he needs. He had learned fasting and patience in this first learning exposure. He had put off the worldly pleasures so quickly and lost himself, he thought he would need to re-find himself in order to experience these pleasures to banish them entirel y. Siddhartha Learning From Himself He decides to learn a life free from meditation and the spiritual quests he has been pursuing, and instead learn from the pleasures of the body and material world. In this journey, he meets a friendly ferryman fully content with his simple life. Siddhartha tells him he has no valuables to exchange for the ferrymans kindness, which he is responded by the ferryman asking for Siddharthas friendship when Siddhartha returns to the river. Siddhartha agrees and departs, then coming to a city, and before entering, comes into contact with a beautiful woman being carried, whom greets him kindly while glancing at the aged and unkempt man. She entices him and he decides she would be the best to learn the world of love from so he cleans himself up and goes to her to seek her wisdom, however, she denied him, until he proved he could fit into the material world. She tells him to take the path of the merchant, and with her help, Siddhartha finds employment with a merchant named Kamaswami, to learn t he trade. While he learns wisdom of the business world and masters such skills, Kamala becomes his lover and she teaches him what she knows of love. Siddhartha stays for many years, and is soon a rich man enjoying the benefits of a privileged life. He gambles, drinks, dances, and has anything that can be bought in the material world at his disposal. But he is detached from this life and only sees it as a game. He soon gets caught in a cycle of unhappiness and tries to escape it by gambling, drinking, and having sex even more than before. He has a dream of Kamalas rare songbird dead in its cage and understands the material world is killing him without providing the enlightenment that he has been searching for, and once he finally thinks the game is over, he just leaves. He does not take anything with him other than the clothes on his back, and tells no one of his departure. He obtains the knowledge of the pleasures hes been attempting to diminish, so that he may now rid himself of th em. Now that he has accomplished this, he is ready to move to whatever journey his life brings him to next. Siddhartha Finding a Wise Teacher and Finding Satisfaction He blankly, and sick at heart, wanders until coming upon a river. He looks and the water and decides drowning himself would be best, and as hes about to succumb to death, he hears om and pulls himself from the water, then throws himself onto the river bank and falls asleep. He sleeps for two days to awaken to a monk watching over him, that he immediately recognizes to be Govinda. He thanks him for watching his slumber and once again departs from his friend to search for the ferryman. He finds him and gets onto the ferry, exchanging banter with the ferryman and recalling their previous meeting and is asked to stay with the man Vasudeva. He agrees to have Vasudeva be his teacher, but once Siddhartha knows to direct the ferry, Vasudeva tells him there is nothing he can teach him, and he will have to find the teacher responsible for Vasudevas virtue(s) on his own. After some time, Siddhartha asked Vasudeva learned from the river, in which he is confirmed and praised for realizing the riv ers teachings by Vasudeva. Siddhartha spends his time ferrying men across the river, and listening to the rivers many voices. After a while, there is news of Gotama being on his deathbed spreading around, calling Kamala out for a chance to seek council with the great Buddha. She brings her son with her as she travels to find Gotama, but while she rests and her son plays, she is tragically bitten by a poisonous snake and slowly succumbs to death, and before leaving, Siddhartha stumbles upon her and holds her as she passes. She confesses to him that the boy with her is his child, and the boy goes with Siddhartha to stay with him and Vasudeva. The boy learns to ferry the boat, and after some time he abandons Siddhartha and takes the boat to a city where he starts his own journey. Siddhartha mourns his son leaving, and ponders going after and finding him and arrives in front of the city thought to harbor him. But realizes the wisdom Vasudeva gives him and understands his son must learn his path on his own, and instead of entering the city he leaves. He mourns for a while longer, and resumes his teachings from the river, upon which Vasudeva makes his departure into the forest, leaving Siddhartha as the ferryman. Siddhartha has at this point become very wise and lives his days out on the river, ferrying men across. A familiar man joins him on the ferry, who he finds to be Govinda. Govinda asks him of the knowledge hes acquired, and is given knowledge from Siddhartha on his values of everything around him. Siddhartha learned the value of the world and materials around him, to appreciate every aspect of everything and be accepting of this resolve.

Friday, January 17, 2020

Unknown Lab Report

Margaret E Gibson July 20, 2009 Microbiology Dr. Metera Lab Report 3: Labs 7 and 8- Metabolism and Biochemical Tests Abstract This experiment focused on metabolism and biochemical tests. The goal of performing these tests was to differentiate microbes from one another and to compare how metabolic and biochemical processes differ from species to species. The tests performed include: the Fermentation of Sugars Test (sucrose, glucose, and lactose), the Urease Test, the Fermentation of Lactose Test, the Sulfide Indole Mobility (SIM) Test, the Nitrate Reduction Test, the Protein Hydrolysis Test, the Catalase Test, and the Cytochrome Oxidase Test. The microbes that were tested during this lab were: Escherichia coli, Bacillus cereus, the unknown, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, the control, and Pseudomonas fluorescens. The microbes tested during these various tests were looking for which would: reduce sulfur/produce sulfate, produce indole, or possess motility, reduce nitrate, and contain protease, catalase and oxidaase. Introduction The purpose of these labs was to observe various metabolic processes by determining the pH of certain bacteria, determining if the bacteria was urease positive or negative, determining which bacteria ferment which sugar(s) during fermentation, and determining if bacteria are lactose fermenters and non-lactose fermenters. Metabolic processes can also be observed by determining if bacteria reduce sulfur/produce sulfate, produce indole, or possess motility, determining which bacteria are able to reduce nitrate, determining if bacteria contain protease, determining if bacteria contain catalase, and determining if bacteria contain oxidase. The tests performed to determine these metabolic processes include: the Fermentation of Sugars Test (sucrose, glucose, and lactose), the Urease Test, the Fermentation of Lactose Test, the Sulfide Indole Mobility (SIM) Test, the Nitrate Reduction Test, the Protein Hydrolysis Test, the Catalase Test, and the Cytochrome Oxidase Test. The bacteria tested include: Escherichia coli, Bacillus cereus, the unknown, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, the control, and Pseudomonas fluorescens. The different types of microbes studied in this experiment include: Escherichia coli, Bacillus cereus, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, and Pseudomonas fluorescens. Escherichia coli is mainly found in animal feces and comprises their intestines as well (US Food and Drug Administration). Bacillus cereus is a known medium of food poisoning and causes vomiting and abdominal cramps (Todar). Proteus vulgaris is connected with food spoilage of meat, poultry, and seafood and may cause diarrhea in infants (Schenectady Country Community College). Staphylococcus epidermis often infects hospital patients with weak immune systems in catheter wounds (European Bioinformatics Institute). Enterobacter aerogenes is the source of numerous infections such as bacteremia, lower respiratory tract infections, skin and soft tissue infections, urinary tract infections (UTIs), endocarditis, intra-abdominal infections, septic arthritis, osteomyelitis, and ophthalmic infections (E Medicine). Pseudomonas fluorescens are able to grow in various conditions such as soil, water, and plant habitats (European Bioinformatics Institute). Several hypotheses arise during this experiment due to the many subjects being tested. However, since there are numerous tests being performed, a more general hypothesis can be ascertained. The hypothesis for all tests in both Lab 7 and Lab 8 is that the outcome of the tests will produce the desired results in order to differentiate various species of bacteria from one another and to reveal certain characteristics of metabolic and biochemical processes. Materials and Methods Lab 7 For Part A of Lab 7, label Escherichia coli, Proteus vulgaris, the unknown, and Enterobacter aerogenes on a blue (sucrose), a green (glucose), and a red (lactose) tube. Then, using aseptic technique, inoculate each bacteria into each color tube by sticking the inoculating loop to the bottom of the tube and twirling it, then pulling it straight out. Record the results. For Part B, label the tubes Escherichia coli, Proteus vulgaris, unknown, and Enterobacter aerogenes. Using aseptic technique, inoculate each tube with the corresponding bacteria by streaking the surface of the agar slant. Record the results. For Part C, label Staphylococcus epidermis, Proteus vulgaris, and Escherichia coli on the Petri plate with the MacConkey agar. Using aseptic technique, inoculate the labeled parts of the plate. Record the results. Lab 8 For Part A of Lab 8, label each tube Enterobacter aerogenes, Staphylococcus epidermis, and Proteus vulgaris. Using aseptic technique, â€Å"stab† the inoculating loop ? of the way to the bottom of the tube and then pull it straight out to inoculate each tube with the corresponding bacteria. Record the results. For Part B, label each tube Enterobacter aerogenes and â€Å"control. † Using aseptic technique, inoculate each Tryptic Nitrate tube by sticking the inoculating loop to the bottom of the tube and twirling it, then pulling it straight out. Then, add ten drops of sulfanilic acid anddemehtyl-1-napthylamine. If a red color develops after this step, record the record the results. If not, add zinc dust to the tube and vortex it. Record the results. For Part C, label Enterobacter aerogenes and Bacillus cereus on the milk agar plate. Using aseptic technique, inoculate the plate with the corresponding bacteria. Record the results. For Part D, put a few drops of water on the slide and then inoculate it with Bacillus cereus. Next, add one drop of hydrogen peroxide to the sample. Record the results. For Part E, use a sterile swab to transfer the cells from Enterobacter aerogenes and Pseudomonas fluorescens to a disk. Use a new swab for each sample. Add one drop of water to each disk. Record the results. Results Lab7: Part A [pic] |[pic] | |Figure 1 |Figure 2 | |Figure 1 is the unknown for sucrose. As shown, it had an orange |Figure 2 is Escherichia coli for sucrose. As shown, it was | |ring at the top that fades to yellow at the bottom, was cloudy |orange throughout, had darker solution inside the tube than out, | |all the way through, and had no bubbles. |was very cloudy at the bottom, and had no bubbles. |[pic] |[pic] | |Figure 3 |Figure 4 | |Figure 3 is Enetrobacter aerogenes for sucrose. As shown, it was|Figure 4 is Bacillus cereus for sucrose. As shown, it had a dark| |yellow and cloudy throughout, and had no bubbles. |orange ring at the top and was light orange, it was cloudy at the| | |bottom, and had no bubbles. |[pic] |[pic] | | | | |Figure 5 |Figure 6 | | | | |Figure 5 is Enterobacter aerogenes for glucose. As shown, it was|Figure 6 is the unknown for glucose. As shown, it had an orange | |all yellow and cloudy (++), and had no bubbles. |ring at the top, was yellow and cloudy (++) throughout, and had | | |no bubbles. |[pic] |[pic] | | | | |Figure 7 |Figure 8 | | | | |Figure 7 is Escherichia coli for glucose. As shown, it was |Figure 8 is Bacillus cereus for glucose. As shown, it was orange| |yellow, cloudy at the top, and had no bubbles. |throughout and had no bubbles. | |[pic] |[pic] | | | | |Figure 9 |Figure 10 | | | | |Figure 9 is the unknown for lactose. As shown, it was uniformly |Figure 10 is Enterobacter aerogenes for lactose. As shown, it | |light red and cloudy (+), and had no bubbles. |was light orange and cloudy (++), had a red ring at the top, and | | |had no bubbles. |[pic] |[pic] | | | | |Figure 11 |Figure 12 | | | | |Figure 11 is Escherichia coli for lactose. As shown, it was |Figure 12 is Bacillus cereus for lactose. As shown, it was red | |yellow, cloudy at the top, and had bubbles. |throughout and had no bubbles. | Lab 7: Part B |[pic] |[pic] | |Figure 13 |Figure 14 | |Figure 13 is the unknown. As shown, it had a red streak of red |Figure 14 is Enterobacter aerogenes. As shown, it had faint | |colonies (+++) and remained the same color. |cloudy colonies (+) and remained the same color. |[pic] |[pic] | |Figure 15 |Figure 16 | |Figure 15 is Escherichia coli. As shown, it had faint cloudy |Figure 16 is Proteus vulgaris. As shown, it was bright pink | |colonies (+) and remained the same color. |throughout, orange at the bottom, and experienced a change in | | |color. | Lab 7: Part C pic] Figure 17 Figure 17 is Staphylococcus epidermis, Proteus vulgaris, and Escherichia coli. As shown, the Staphylococcus epidermis showed no growth, the Pseudomonas vulgaris showed substantial growth (+++), and the Escherichia coli showed substantial growth (+++) and turned pink. Lab 8: Part A |[pic] |[pic] | |Fi gure 18 |Figure 19 | |Figure 19 is Enterobacter aerogenes. As shown, it showed |Figure 20 is Staphylococcus epidermis. As shown, it showed no | |substantial growth (+++). |growth. | |[pic] | | |Figure 20 | | |Figure 21 is Proteus vulgaris. As shown, it showed substantial | | |growth (+++), turned black, and exhibited a red ring at the top. | Lab 8: Part B |[pic] |[pic] | |Figure 21 |Figure 22 | |Figure 22 is Enterobacter aerogenes. As shown, it was red ? of |Figure 23 is the control. As shown, it was red ? of the way | |the way through separated by black at the bottom. |through separated by black at the bottom. | Lab 8: Part C [pic] Figure 23 Figure 24 is Enterobacter aerogenes and Bacillus cereus. As shown, Bacillus cereus exhibited a lot of growth (++++). Lab 8: Part D [pic] Figure 24 Figure 25 is Bacillus cereus. As shown, it formed bubbles. Lab 8: Part E [pic] Figure 25 Figure 26 is Enterobacter aerogenes and Pseudomonas fluorescens. As shown, the Pseudomonas fluroescens turned purple. Discussion The results of this experiment prove that the hypothesis was correct: the expected results were obtained and therefore made it possible to differentiate various species of bacteria from one another and to reveal certain characteristics of metabolic and biochemical processes. For example, in the Fermentation of Sugars test, the unknown’s pH was slightly alkaline and no carbon dioxide gas was given off (Figures 1, 6, and 9). The Escherichia coli had a pH around neutral for all three of the sugars and there were bubbles in the Durham tube for glucose, so the bacteria produced carbon dioxide gas during fermentation (Figures 2, 7, and 11). The Enterobacter aerogenes had a slightly acidic pH and no carbon dioxide gas was given off (Figures 3, 5, and 10). The Bacillus cereus had a slightly alkaline pH and no carbon dioxide gas was given off (Figures 4, 8, and 12). In the Detection of Urease test, the unknown remained the same color, so it was urease negative (Figure 13). The Enterobacter aerogenes remained the same color, so it was urease negative (Figure 14). The Escherichia coli remained the same color, so it was also urease negative (Figure 15). The Proteus vulgaris turned red, meaning it became alkaline with the production of ammonia, so it was urease positive (Figure 16). In the MacConkey Agar test, the Staphylococcus epidermis exhibited no growth, meaning it is Gram positive, and it does not ferment lactose (Figure 17). The Proteus vulgaris exhibited growth, so it is Gram negative, and it does not ferment lactose (Figure 17). The Escherichia coli exhibited growth, so it is Gram negative, and it turned red, so it ferments lactose (Figure 17). In the Sulfur Indole Motility test (SIM), Enterobacter aerogenes exhibited growth above the inoculation line, so it is motile (Figure 18). The Staphylococcus epidermis did not exhibit any growth, so it is not motile (Figure 19). The Proteus vulgaris exhibited growth above the inoculation line, turned black, and showed a red ring at the top of the solution, so it is motile, a phosphorus reducer, and an indole producer (Figure 20). In the Nitrate Reduction test, the Enterobacter aerogenes turned red, so the nitrate was not reduced by nitrate reductase, meaning it was nitrate reductase negative (Figure 21). The control also turned red, so the nitrate was not reduced by nitrate reductase, meaning it was also nitrate reductase negative (Figure 22). In the Protein Hydrolysis test, the Enterobacter aerogenes did not exhibit any growth, so it was protease negative (Figure 23). The Bacillus cereus exhibited a lot of growth and turned the milk agar clear, so it was protease positive (Figure 23). In the Catalase test, the Bacillus cereus bubbled, so it is catalase positive (Figure 24). In the Cytochrome Oxidase test, the Enterbacter aerogenes did not change color, so it is cytochromoe oxidase negative (Figure 25). The Pseudomonas fluorescens turned purple, so it is oxidase positive (Figure 25). As expected in all laboratory experiments, this one had the possibility of human error. Mistakes could have been made by failing to sterilize the inoculating loop correctly, which would result in possible contamination of the sample. Another error could have been possibly occurred by mislabeling the plates according to species, which would produce invalid results. Finally, failing to inoculate the SIM tubes ? of the way to the bottom of the tube would result in the inability to observe whether or not the species is motile or not. Although this experiment went rather smoothly, there is always an opportunity for mprovement. An example of how this experiment could be made better is by testing more of the same microbes in each test. In Labs 7 and 8, many of the microbes used in the tests were not consistently present in each one. If the same bacteria were used, it would aid greatly in differentiating the same bacteria from one another and observing how metabolic and biochemical processes differ from species to species. This experiment and its results are important to the scientific community because they ultimately serve as a basis for further study of the subject. By learning basic metabolism and biochemical tests used to differentiate microscopic organisms from one another, researchers can then develop more advanced and more specific tests that can further distinguish microbial species from each other. This will aid in discovering new microbes and different ways microbes react to certain factors. By doing so, researchers will have a better idea of how to distinguish helpful, potentially life-saving microbes from pathogenic or harmful ones. References US Food and Drug Administration. Escherichia Coli. 5 Oct. 2006. . . Todar, Kenneth. Bacillus Cereus Food Poisoning. 2006. . . Schenectady County Community College. Proteus Vulgaris, P. Mirabilis.. . . European Bioinformatics Institute . Staphylococcus Epidermis Can Cause Infections in Wounds. 2006-2007. . . E Medicine . Excerpt from Enterobacter Infections. 1996-2006. . . European Bioinformatics Institute . Pseudomonas Fluorescens Is Being Researched as a Biological Control Organism. 2006-2007. . . Unknown Lab Report Margaret E Gibson July 20, 2009 Microbiology Dr. Metera Lab Report 3: Labs 7 and 8- Metabolism and Biochemical Tests Abstract This experiment focused on metabolism and biochemical tests. The goal of performing these tests was to differentiate microbes from one another and to compare how metabolic and biochemical processes differ from species to species. The tests performed include: the Fermentation of Sugars Test (sucrose, glucose, and lactose), the Urease Test, the Fermentation of Lactose Test, the Sulfide Indole Mobility (SIM) Test, the Nitrate Reduction Test, the Protein Hydrolysis Test, the Catalase Test, and the Cytochrome Oxidase Test. The microbes that were tested during this lab were: Escherichia coli, Bacillus cereus, the unknown, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, the control, and Pseudomonas fluorescens. The microbes tested during these various tests were looking for which would: reduce sulfur/produce sulfate, produce indole, or possess motility, reduce nitrate, and contain protease, catalase and oxidaase. Introduction The purpose of these labs was to observe various metabolic processes by determining the pH of certain bacteria, determining if the bacteria was urease positive or negative, determining which bacteria ferment which sugar(s) during fermentation, and determining if bacteria are lactose fermenters and non-lactose fermenters. Metabolic processes can also be observed by determining if bacteria reduce sulfur/produce sulfate, produce indole, or possess motility, determining which bacteria are able to reduce nitrate, determining if bacteria contain protease, determining if bacteria contain catalase, and determining if bacteria contain oxidase. The tests performed to determine these metabolic processes include: the Fermentation of Sugars Test (sucrose, glucose, and lactose), the Urease Test, the Fermentation of Lactose Test, the Sulfide Indole Mobility (SIM) Test, the Nitrate Reduction Test, the Protein Hydrolysis Test, the Catalase Test, and the Cytochrome Oxidase Test. The bacteria tested include: Escherichia coli, Bacillus cereus, the unknown, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, the control, and Pseudomonas fluorescens. The different types of microbes studied in this experiment include: Escherichia coli, Bacillus cereus, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, and Pseudomonas fluorescens. Escherichia coli is mainly found in animal feces and comprises their intestines as well (US Food and Drug Administration). Bacillus cereus is a known medium of food poisoning and causes vomiting and abdominal cramps (Todar). Proteus vulgaris is connected with food spoilage of meat, poultry, and seafood and may cause diarrhea in infants (Schenectady Country Community College). Staphylococcus epidermis often infects hospital patients with weak immune systems in catheter wounds (European Bioinformatics Institute). Enterobacter aerogenes is the source of numerous infections such as bacteremia, lower respiratory tract infections, skin and soft tissue infections, urinary tract infections (UTIs), endocarditis, intra-abdominal infections, septic arthritis, osteomyelitis, and ophthalmic infections (E Medicine). Pseudomonas fluorescens are able to grow in various conditions such as soil, water, and plant habitats (European Bioinformatics Institute). Several hypotheses arise during this experiment due to the many subjects being tested. However, since there are numerous tests being performed, a more general hypothesis can be ascertained. The hypothesis for all tests in both Lab 7 and Lab 8 is that the outcome of the tests will produce the desired results in order to differentiate various species of bacteria from one another and to reveal certain characteristics of metabolic and biochemical processes. Materials and Methods Lab 7 For Part A of Lab 7, label Escherichia coli, Proteus vulgaris, the unknown, and Enterobacter aerogenes on a blue (sucrose), a green (glucose), and a red (lactose) tube. Then, using aseptic technique, inoculate each bacteria into each color tube by sticking the inoculating loop to the bottom of the tube and twirling it, then pulling it straight out. Record the results. For Part B, label the tubes Escherichia coli, Proteus vulgaris, unknown, and Enterobacter aerogenes. Using aseptic technique, inoculate each tube with the corresponding bacteria by streaking the surface of the agar slant. Record the results. For Part C, label Staphylococcus epidermis, Proteus vulgaris, and Escherichia coli on the Petri plate with the MacConkey agar. Using aseptic technique, inoculate the labeled parts of the plate. Record the results. Lab 8 For Part A of Lab 8, label each tube Enterobacter aerogenes, Staphylococcus epidermis, and Proteus vulgaris. Using aseptic technique, â€Å"stab† the inoculating loop ? of the way to the bottom of the tube and then pull it straight out to inoculate each tube with the corresponding bacteria. Record the results. For Part B, label each tube Enterobacter aerogenes and â€Å"control. † Using aseptic technique, inoculate each Tryptic Nitrate tube by sticking the inoculating loop to the bottom of the tube and twirling it, then pulling it straight out. Then, add ten drops of sulfanilic acid anddemehtyl-1-napthylamine. If a red color develops after this step, record the record the results. If not, add zinc dust to the tube and vortex it. Record the results. For Part C, label Enterobacter aerogenes and Bacillus cereus on the milk agar plate. Using aseptic technique, inoculate the plate with the corresponding bacteria. Record the results. For Part D, put a few drops of water on the slide and then inoculate it with Bacillus cereus. Next, add one drop of hydrogen peroxide to the sample. Record the results. For Part E, use a sterile swab to transfer the cells from Enterobacter aerogenes and Pseudomonas fluorescens to a disk. Use a new swab for each sample. Add one drop of water to each disk. Record the results. Results Lab7: Part A [pic] |[pic] | |Figure 1 |Figure 2 | |Figure 1 is the unknown for sucrose. As shown, it had an orange |Figure 2 is Escherichia coli for sucrose. As shown, it was | |ring at the top that fades to yellow at the bottom, was cloudy |orange throughout, had darker solution inside the tube than out, | |all the way through, and had no bubbles. |was very cloudy at the bottom, and had no bubbles. |[pic] |[pic] | |Figure 3 |Figure 4 | |Figure 3 is Enetrobacter aerogenes for sucrose. As shown, it was|Figure 4 is Bacillus cereus for sucrose. As shown, it had a dark| |yellow and cloudy throughout, and had no bubbles. |orange ring at the top and was light orange, it was cloudy at the| | |bottom, and had no bubbles. |[pic] |[pic] | | | | |Figure 5 |Figure 6 | | | | |Figure 5 is Enterobacter aerogenes for glucose. As shown, it was|Figure 6 is the unknown for glucose. As shown, it had an orange | |all yellow and cloudy (++), and had no bubbles. |ring at the top, was yellow and cloudy (++) throughout, and had | | |no bubbles. |[pic] |[pic] | | | | |Figure 7 |Figure 8 | | | | |Figure 7 is Escherichia coli for glucose. As shown, it was |Figure 8 is Bacillus cereus for glucose. As shown, it was orange| |yellow, cloudy at the top, and had no bubbles. |throughout and had no bubbles. | |[pic] |[pic] | | | | |Figure 9 |Figure 10 | | | | |Figure 9 is the unknown for lactose. As shown, it was uniformly |Figure 10 is Enterobacter aerogenes for lactose. As shown, it | |light red and cloudy (+), and had no bubbles. |was light orange and cloudy (++), had a red ring at the top, and | | |had no bubbles. |[pic] |[pic] | | | | |Figure 11 |Figure 12 | | | | |Figure 11 is Escherichia coli for lactose. As shown, it was |Figure 12 is Bacillus cereus for lactose. As shown, it was red | |yellow, cloudy at the top, and had bubbles. |throughout and had no bubbles. | Lab 7: Part B |[pic] |[pic] | |Figure 13 |Figure 14 | |Figure 13 is the unknown. As shown, it had a red streak of red |Figure 14 is Enterobacter aerogenes. As shown, it had faint | |colonies (+++) and remained the same color. |cloudy colonies (+) and remained the same color. |[pic] |[pic] | |Figure 15 |Figure 16 | |Figure 15 is Escherichia coli. As shown, it had faint cloudy |Figure 16 is Proteus vulgaris. As shown, it was bright pink | |colonies (+) and remained the same color. |throughout, orange at the bottom, and experienced a change in | | |color. | Lab 7: Part C pic] Figure 17 Figure 17 is Staphylococcus epidermis, Proteus vulgaris, and Escherichia coli. As shown, the Staphylococcus epidermis showed no growth, the Pseudomonas vulgaris showed substantial growth (+++), and the Escherichia coli showed substantial growth (+++) and turned pink. Lab 8: Part A |[pic] |[pic] | |Fi gure 18 |Figure 19 | |Figure 19 is Enterobacter aerogenes. As shown, it showed |Figure 20 is Staphylococcus epidermis. As shown, it showed no | |substantial growth (+++). |growth. | |[pic] | | |Figure 20 | | |Figure 21 is Proteus vulgaris. As shown, it showed substantial | | |growth (+++), turned black, and exhibited a red ring at the top. | Lab 8: Part B |[pic] |[pic] | |Figure 21 |Figure 22 | |Figure 22 is Enterobacter aerogenes. As shown, it was red ? of |Figure 23 is the control. As shown, it was red ? of the way | |the way through separated by black at the bottom. |through separated by black at the bottom. | Lab 8: Part C [pic] Figure 23 Figure 24 is Enterobacter aerogenes and Bacillus cereus. As shown, Bacillus cereus exhibited a lot of growth (++++). Lab 8: Part D [pic] Figure 24 Figure 25 is Bacillus cereus. As shown, it formed bubbles. Lab 8: Part E [pic] Figure 25 Figure 26 is Enterobacter aerogenes and Pseudomonas fluorescens. As shown, the Pseudomonas fluroescens turned purple. Discussion The results of this experiment prove that the hypothesis was correct: the expected results were obtained and therefore made it possible to differentiate various species of bacteria from one another and to reveal certain characteristics of metabolic and biochemical processes. For example, in the Fermentation of Sugars test, the unknown’s pH was slightly alkaline and no carbon dioxide gas was given off (Figures 1, 6, and 9). The Escherichia coli had a pH around neutral for all three of the sugars and there were bubbles in the Durham tube for glucose, so the bacteria produced carbon dioxide gas during fermentation (Figures 2, 7, and 11). The Enterobacter aerogenes had a slightly acidic pH and no carbon dioxide gas was given off (Figures 3, 5, and 10). The Bacillus cereus had a slightly alkaline pH and no carbon dioxide gas was given off (Figures 4, 8, and 12). In the Detection of Urease test, the unknown remained the same color, so it was urease negative (Figure 13). The Enterobacter aerogenes remained the same color, so it was urease negative (Figure 14). The Escherichia coli remained the same color, so it was also urease negative (Figure 15). The Proteus vulgaris turned red, meaning it became alkaline with the production of ammonia, so it was urease positive (Figure 16). In the MacConkey Agar test, the Staphylococcus epidermis exhibited no growth, meaning it is Gram positive, and it does not ferment lactose (Figure 17). The Proteus vulgaris exhibited growth, so it is Gram negative, and it does not ferment lactose (Figure 17). The Escherichia coli exhibited growth, so it is Gram negative, and it turned red, so it ferments lactose (Figure 17). In the Sulfur Indole Motility test (SIM), Enterobacter aerogenes exhibited growth above the inoculation line, so it is motile (Figure 18). The Staphylococcus epidermis did not exhibit any growth, so it is not motile (Figure 19). The Proteus vulgaris exhibited growth above the inoculation line, turned black, and showed a red ring at the top of the solution, so it is motile, a phosphorus reducer, and an indole producer (Figure 20). In the Nitrate Reduction test, the Enterobacter aerogenes turned red, so the nitrate was not reduced by nitrate reductase, meaning it was nitrate reductase negative (Figure 21). The control also turned red, so the nitrate was not reduced by nitrate reductase, meaning it was also nitrate reductase negative (Figure 22). In the Protein Hydrolysis test, the Enterobacter aerogenes did not exhibit any growth, so it was protease negative (Figure 23). The Bacillus cereus exhibited a lot of growth and turned the milk agar clear, so it was protease positive (Figure 23). In the Catalase test, the Bacillus cereus bubbled, so it is catalase positive (Figure 24). In the Cytochrome Oxidase test, the Enterbacter aerogenes did not change color, so it is cytochromoe oxidase negative (Figure 25). The Pseudomonas fluorescens turned purple, so it is oxidase positive (Figure 25). As expected in all laboratory experiments, this one had the possibility of human error. Mistakes could have been made by failing to sterilize the inoculating loop correctly, which would result in possible contamination of the sample. Another error could have been possibly occurred by mislabeling the plates according to species, which would produce invalid results. Finally, failing to inoculate the SIM tubes ? of the way to the bottom of the tube would result in the inability to observe whether or not the species is motile or not. Although this experiment went rather smoothly, there is always an opportunity for mprovement. An example of how this experiment could be made better is by testing more of the same microbes in each test. In Labs 7 and 8, many of the microbes used in the tests were not consistently present in each one. If the same bacteria were used, it would aid greatly in differentiating the same bacteria from one another and observing how metabolic and biochemical processes differ from species to species. This experiment and its results are important to the scientific community because they ultimately serve as a basis for further study of the subject. By learning basic metabolism and biochemical tests used to differentiate microscopic organisms from one another, researchers can then develop more advanced and more specific tests that can further distinguish microbial species from each other. This will aid in discovering new microbes and different ways microbes react to certain factors. By doing so, researchers will have a better idea of how to distinguish helpful, potentially life-saving microbes from pathogenic or harmful ones. References US Food and Drug Administration. Escherichia Coli. 5 Oct. 2006. . . Todar, Kenneth. Bacillus Cereus Food Poisoning. 2006. . . Schenectady County Community College. Proteus Vulgaris, P. Mirabilis.. . . European Bioinformatics Institute . Staphylococcus Epidermis Can Cause Infections in Wounds. 2006-2007. . . E Medicine . Excerpt from Enterobacter Infections. 1996-2006. . . European Bioinformatics Institute . Pseudomonas Fluorescens Is Being Researched as a Biological Control Organism. 2006-2007. . . Unknown Lab Report Margaret E Gibson July 20, 2009 Microbiology Dr. Metera Lab Report 3: Labs 7 and 8- Metabolism and Biochemical Tests Abstract This experiment focused on metabolism and biochemical tests. The goal of performing these tests was to differentiate microbes from one another and to compare how metabolic and biochemical processes differ from species to species. The tests performed include: the Fermentation of Sugars Test (sucrose, glucose, and lactose), the Urease Test, the Fermentation of Lactose Test, the Sulfide Indole Mobility (SIM) Test, the Nitrate Reduction Test, the Protein Hydrolysis Test, the Catalase Test, and the Cytochrome Oxidase Test. The microbes that were tested during this lab were: Escherichia coli, Bacillus cereus, the unknown, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, the control, and Pseudomonas fluorescens. The microbes tested during these various tests were looking for which would: reduce sulfur/produce sulfate, produce indole, or possess motility, reduce nitrate, and contain protease, catalase and oxidaase. Introduction The purpose of these labs was to observe various metabolic processes by determining the pH of certain bacteria, determining if the bacteria was urease positive or negative, determining which bacteria ferment which sugar(s) during fermentation, and determining if bacteria are lactose fermenters and non-lactose fermenters. Metabolic processes can also be observed by determining if bacteria reduce sulfur/produce sulfate, produce indole, or possess motility, determining which bacteria are able to reduce nitrate, determining if bacteria contain protease, determining if bacteria contain catalase, and determining if bacteria contain oxidase. The tests performed to determine these metabolic processes include: the Fermentation of Sugars Test (sucrose, glucose, and lactose), the Urease Test, the Fermentation of Lactose Test, the Sulfide Indole Mobility (SIM) Test, the Nitrate Reduction Test, the Protein Hydrolysis Test, the Catalase Test, and the Cytochrome Oxidase Test. The bacteria tested include: Escherichia coli, Bacillus cereus, the unknown, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, the control, and Pseudomonas fluorescens. The different types of microbes studied in this experiment include: Escherichia coli, Bacillus cereus, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, and Pseudomonas fluorescens. Escherichia coli is mainly found in animal feces and comprises their intestines as well (US Food and Drug Administration). Bacillus cereus is a known medium of food poisoning and causes vomiting and abdominal cramps (Todar). Proteus vulgaris is connected with food spoilage of meat, poultry, and seafood and may cause diarrhea in infants (Schenectady Country Community College). Staphylococcus epidermis often infects hospital patients with weak immune systems in catheter wounds (European Bioinformatics Institute). Enterobacter aerogenes is the source of numerous infections such as bacteremia, lower respiratory tract infections, skin and soft tissue infections, urinary tract infections (UTIs), endocarditis, intra-abdominal infections, septic arthritis, osteomyelitis, and ophthalmic infections (E Medicine). Pseudomonas fluorescens are able to grow in various conditions such as soil, water, and plant habitats (European Bioinformatics Institute). Several hypotheses arise during this experiment due to the many subjects being tested. However, since there are numerous tests being performed, a more general hypothesis can be ascertained. The hypothesis for all tests in both Lab 7 and Lab 8 is that the outcome of the tests will produce the desired results in order to differentiate various species of bacteria from one another and to reveal certain characteristics of metabolic and biochemical processes. Materials and Methods Lab 7 For Part A of Lab 7, label Escherichia coli, Proteus vulgaris, the unknown, and Enterobacter aerogenes on a blue (sucrose), a green (glucose), and a red (lactose) tube. Then, using aseptic technique, inoculate each bacteria into each color tube by sticking the inoculating loop to the bottom of the tube and twirling it, then pulling it straight out. Record the results. For Part B, label the tubes Escherichia coli, Proteus vulgaris, unknown, and Enterobacter aerogenes. Using aseptic technique, inoculate each tube with the corresponding bacteria by streaking the surface of the agar slant. Record the results. For Part C, label Staphylococcus epidermis, Proteus vulgaris, and Escherichia coli on the Petri plate with the MacConkey agar. Using aseptic technique, inoculate the labeled parts of the plate. Record the results. Lab 8 For Part A of Lab 8, label each tube Enterobacter aerogenes, Staphylococcus epidermis, and Proteus vulgaris. Using aseptic technique, â€Å"stab† the inoculating loop ? of the way to the bottom of the tube and then pull it straight out to inoculate each tube with the corresponding bacteria. Record the results. For Part B, label each tube Enterobacter aerogenes and â€Å"control. † Using aseptic technique, inoculate each Tryptic Nitrate tube by sticking the inoculating loop to the bottom of the tube and twirling it, then pulling it straight out. Then, add ten drops of sulfanilic acid anddemehtyl-1-napthylamine. If a red color develops after this step, record the record the results. If not, add zinc dust to the tube and vortex it. Record the results. For Part C, label Enterobacter aerogenes and Bacillus cereus on the milk agar plate. Using aseptic technique, inoculate the plate with the corresponding bacteria. Record the results. For Part D, put a few drops of water on the slide and then inoculate it with Bacillus cereus. Next, add one drop of hydrogen peroxide to the sample. Record the results. For Part E, use a sterile swab to transfer the cells from Enterobacter aerogenes and Pseudomonas fluorescens to a disk. Use a new swab for each sample. Add one drop of water to each disk. Record the results. Results Lab7: Part A [pic] |[pic] | |Figure 1 |Figure 2 | |Figure 1 is the unknown for sucrose. As shown, it had an orange |Figure 2 is Escherichia coli for sucrose. As shown, it was | |ring at the top that fades to yellow at the bottom, was cloudy |orange throughout, had darker solution inside the tube than out, | |all the way through, and had no bubbles. |was very cloudy at the bottom, and had no bubbles. |[pic] |[pic] | |Figure 3 |Figure 4 | |Figure 3 is Enetrobacter aerogenes for sucrose. As shown, it was|Figure 4 is Bacillus cereus for sucrose. As shown, it had a dark| |yellow and cloudy throughout, and had no bubbles. |orange ring at the top and was light orange, it was cloudy at the| | |bottom, and had no bubbles. |[pic] |[pic] | | | | |Figure 5 |Figure 6 | | | | |Figure 5 is Enterobacter aerogenes for glucose. As shown, it was|Figure 6 is the unknown for glucose. As shown, it had an orange | |all yellow and cloudy (++), and had no bubbles. |ring at the top, was yellow and cloudy (++) throughout, and had | | |no bubbles. |[pic] |[pic] | | | | |Figure 7 |Figure 8 | | | | |Figure 7 is Escherichia coli for glucose. As shown, it was |Figure 8 is Bacillus cereus for glucose. As shown, it was orange| |yellow, cloudy at the top, and had no bubbles. |throughout and had no bubbles. | |[pic] |[pic] | | | | |Figure 9 |Figure 10 | | | | |Figure 9 is the unknown for lactose. As shown, it was uniformly |Figure 10 is Enterobacter aerogenes for lactose. As shown, it | |light red and cloudy (+), and had no bubbles. |was light orange and cloudy (++), had a red ring at the top, and | | |had no bubbles. |[pic] |[pic] | | | | |Figure 11 |Figure 12 | | | | |Figure 11 is Escherichia coli for lactose. As shown, it was |Figure 12 is Bacillus cereus for lactose. As shown, it was red | |yellow, cloudy at the top, and had bubbles. |throughout and had no bubbles. | Lab 7: Part B |[pic] |[pic] | |Figure 13 |Figure 14 | |Figure 13 is the unknown. As shown, it had a red streak of red |Figure 14 is Enterobacter aerogenes. As shown, it had faint | |colonies (+++) and remained the same color. |cloudy colonies (+) and remained the same color. |[pic] |[pic] | |Figure 15 |Figure 16 | |Figure 15 is Escherichia coli. As shown, it had faint cloudy |Figure 16 is Proteus vulgaris. As shown, it was bright pink | |colonies (+) and remained the same color. |throughout, orange at the bottom, and experienced a change in | | |color. | Lab 7: Part C pic] Figure 17 Figure 17 is Staphylococcus epidermis, Proteus vulgaris, and Escherichia coli. As shown, the Staphylococcus epidermis showed no growth, the Pseudomonas vulgaris showed substantial growth (+++), and the Escherichia coli showed substantial growth (+++) and turned pink. Lab 8: Part A |[pic] |[pic] | |Fi gure 18 |Figure 19 | |Figure 19 is Enterobacter aerogenes. As shown, it showed |Figure 20 is Staphylococcus epidermis. As shown, it showed no | |substantial growth (+++). |growth. | |[pic] | | |Figure 20 | | |Figure 21 is Proteus vulgaris. As shown, it showed substantial | | |growth (+++), turned black, and exhibited a red ring at the top. | Lab 8: Part B |[pic] |[pic] | |Figure 21 |Figure 22 | |Figure 22 is Enterobacter aerogenes. As shown, it was red ? of |Figure 23 is the control. As shown, it was red ? of the way | |the way through separated by black at the bottom. |through separated by black at the bottom. | Lab 8: Part C [pic] Figure 23 Figure 24 is Enterobacter aerogenes and Bacillus cereus. As shown, Bacillus cereus exhibited a lot of growth (++++). Lab 8: Part D [pic] Figure 24 Figure 25 is Bacillus cereus. As shown, it formed bubbles. Lab 8: Part E [pic] Figure 25 Figure 26 is Enterobacter aerogenes and Pseudomonas fluorescens. As shown, the Pseudomonas fluroescens turned purple. Discussion The results of this experiment prove that the hypothesis was correct: the expected results were obtained and therefore made it possible to differentiate various species of bacteria from one another and to reveal certain characteristics of metabolic and biochemical processes. For example, in the Fermentation of Sugars test, the unknown’s pH was slightly alkaline and no carbon dioxide gas was given off (Figures 1, 6, and 9). The Escherichia coli had a pH around neutral for all three of the sugars and there were bubbles in the Durham tube for glucose, so the bacteria produced carbon dioxide gas during fermentation (Figures 2, 7, and 11). The Enterobacter aerogenes had a slightly acidic pH and no carbon dioxide gas was given off (Figures 3, 5, and 10). The Bacillus cereus had a slightly alkaline pH and no carbon dioxide gas was given off (Figures 4, 8, and 12). In the Detection of Urease test, the unknown remained the same color, so it was urease negative (Figure 13). The Enterobacter aerogenes remained the same color, so it was urease negative (Figure 14). The Escherichia coli remained the same color, so it was also urease negative (Figure 15). The Proteus vulgaris turned red, meaning it became alkaline with the production of ammonia, so it was urease positive (Figure 16). In the MacConkey Agar test, the Staphylococcus epidermis exhibited no growth, meaning it is Gram positive, and it does not ferment lactose (Figure 17). The Proteus vulgaris exhibited growth, so it is Gram negative, and it does not ferment lactose (Figure 17). The Escherichia coli exhibited growth, so it is Gram negative, and it turned red, so it ferments lactose (Figure 17). In the Sulfur Indole Motility test (SIM), Enterobacter aerogenes exhibited growth above the inoculation line, so it is motile (Figure 18). The Staphylococcus epidermis did not exhibit any growth, so it is not motile (Figure 19). The Proteus vulgaris exhibited growth above the inoculation line, turned black, and showed a red ring at the top of the solution, so it is motile, a phosphorus reducer, and an indole producer (Figure 20). In the Nitrate Reduction test, the Enterobacter aerogenes turned red, so the nitrate was not reduced by nitrate reductase, meaning it was nitrate reductase negative (Figure 21). The control also turned red, so the nitrate was not reduced by nitrate reductase, meaning it was also nitrate reductase negative (Figure 22). In the Protein Hydrolysis test, the Enterobacter aerogenes did not exhibit any growth, so it was protease negative (Figure 23). The Bacillus cereus exhibited a lot of growth and turned the milk agar clear, so it was protease positive (Figure 23). In the Catalase test, the Bacillus cereus bubbled, so it is catalase positive (Figure 24). In the Cytochrome Oxidase test, the Enterbacter aerogenes did not change color, so it is cytochromoe oxidase negative (Figure 25). The Pseudomonas fluorescens turned purple, so it is oxidase positive (Figure 25). As expected in all laboratory experiments, this one had the possibility of human error. Mistakes could have been made by failing to sterilize the inoculating loop correctly, which would result in possible contamination of the sample. Another error could have been possibly occurred by mislabeling the plates according to species, which would produce invalid results. Finally, failing to inoculate the SIM tubes ? of the way to the bottom of the tube would result in the inability to observe whether or not the species is motile or not. Although this experiment went rather smoothly, there is always an opportunity for mprovement. An example of how this experiment could be made better is by testing more of the same microbes in each test. In Labs 7 and 8, many of the microbes used in the tests were not consistently present in each one. If the same bacteria were used, it would aid greatly in differentiating the same bacteria from one another and observing how metabolic and biochemical processes differ from species to species. This experiment and its results are important to the scientific community because they ultimately serve as a basis for further study of the subject. By learning basic metabolism and biochemical tests used to differentiate microscopic organisms from one another, researchers can then develop more advanced and more specific tests that can further distinguish microbial species from each other. This will aid in discovering new microbes and different ways microbes react to certain factors. By doing so, researchers will have a better idea of how to distinguish helpful, potentially life-saving microbes from pathogenic or harmful ones. References US Food and Drug Administration. Escherichia Coli. 5 Oct. 2006. . . Todar, Kenneth. Bacillus Cereus Food Poisoning. 2006. . . Schenectady County Community College. Proteus Vulgaris, P. Mirabilis.. . . European Bioinformatics Institute . Staphylococcus Epidermis Can Cause Infections in Wounds. 2006-2007. . . E Medicine . Excerpt from Enterobacter Infections. 1996-2006. . . European Bioinformatics Institute . Pseudomonas Fluorescens Is Being Researched as a Biological Control Organism. 2006-2007. . .

Thursday, January 9, 2020

Essay on A comparison of Ancient Rome and Pre WW1 United...

A comparison of Ancient Rome and Pre WW1 United States Title: The Roman Empire and the Early United States A comparison The purpose of this paper is to show the comparison between remarkable empires that were created in many years apart. I chose to compare Pre-World War I United States and the Roman Empire. The Roman Empire information is said to be recorded between 753BC – 1184 BC (ThinkQuest) and the Pre World War I information is between late 19th century and early 20th century (Encarta). Included in this paper will be in information comparing: Government, Economy, Military, and Religion. GOVERNMENT The Roman Empire had 3 different types of government during this period. During the 1st period Rome was controlled by a King,†¦show more content†¦This to was a major resource for the United States, although the manufacturing was in place that created a vast majority of goods for its people. The means of payment were similar also. The Roman Empire used silver, gold and bronze coins as a means of payment for goods. This system also existed in the United States. The Romans had also built roads and ships in order to transport the goods for trading; this practice was also exercised in early America. As both the Roman Empire and the United States progressed each society had a surge of â€Å"big business†. In the Roman Empire military was increasing and many of the smaller farmers where forced to sell out their land to larger farmers due to increased taxes. In comparison the United States was currently catering to all big business in order to create a manufacturing powerhou se. This had changed the style of the 1800’s into production and factories. Many people who were once skilled craftsman where forced to work in factory jobs and working long hours in hazardous conditions. Both these empires where growing in such force that it had consequently destroyed or forced change upon current residence and higher taxes where in force as well. MILITARY The Roman Empire and the United States both had well developed protective forces in place. The Roman Army consisted of many different units performing a variety of functions. Coincidently the United States had a similar military in place as well.

Wednesday, January 1, 2020

First Amendment Status of Cable TV v. Broadcast - 700 Words

First Amendment Status of Cable TV v. Broadcast Electronic media content can be viewed differently according to personal opinions, but the First Amendment Rights of the United States Constitution lay the foundation for the legal system that is to be followed. These rights form a guide that help citizens have a stronger grasp on what is and isn’t acceptable within the eye of the law. Narrowing down to electronic media content, there has been a rise of tension involving first amendment rights of content regulations. The spectrum scarcity rationale has made it possible to control licensing schemes, along with direct content control to make sure rules are being followed according to the First Amendment. The differences between cable TV†¦show more content†¦The FCC does not license cable TV as a requirement for operating the systems because the municipal government is the primary regulator. Unlike broadcasting, the cable systems’ legal rights can be controlled by cities and countries, or by local governments tha t franchise cable operators. Cable systems regulations are less strict, but still come with federal limits on ownership. The Cable television consumer protection and competition act of 1992 influenced the congress to direct the FCC to establish two types of limits defining the line between the owner’s reach of operation, â€Å"horizontal,† and the cable operator’s integration with content providers, †vertical.† The horizontal rule provided cable companies with 30 percent national pay, and no more than 40 percent to the vertical rule. These rules were tested in the case of Time Warner Entertainment Co. v. FCC as unconstitutionally arbitrary. The court said, â€Å"we recognize that in drawing a numerical line an agency will ultimately indulge in some inescapable residue of arbitrariness†¦ But to pass even the arbitrary and capricious standard, the agency must at least reveal a rational connection between the facts found and the choice made† (pg. 408, ch. 9, The FCC and Broadcast Licensing). Broadcasting has a strict regulated radio spectrum, where as cable has no limit on how many channels can be delivered to a home, nor the amount of cableShow MoreRelatedRegulation of Advertising and Promotion Essay21364 Words   |  86 Pagesthat affect advertising.      True  Ã‚  Ã‚  Ã‚  False    9. The Second Amendment protection has been extended to commercial speech.      True  Ã‚  Ã‚  Ã‚  False    10. The Central Hudson Test is typically a two-part test established by the American Marketing Association.      True  Ã‚  Ã‚  Ã‚  False    11. The Federal Trade Commission (FTC) Act was originally intended to help enforce antitrust laws such as the Sherman and Clayton Acts.      True  Ã‚  Ã‚  Ã‚  False    12. The Wheeler-Lea Amendment gave the Federal Trade Commission (FTC) the power to issueRead MoreAlcohol Marketing and Advertising25059 Words   |  101 PagesMarketing on Minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 D. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 III. The Status of Advertising Self-Regulation in the Alcohol Industry . . . . . . . . . . . . . . . . . . . . 7 A. The Benefits of Self-Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 B. Current State of IndustryRead MoreMonsanto: Better Living Through Genetic Engineering96204 Words   |  385 Pagesindustry C A S E F I V E Nucor in 2005 C A S E S I X News Corp in 2005: Consolidating the DirecTV acquisition C A S E S E V E N Shanghai Volkswagen: Implementing project management in the electrical engineering division C A S E E I G H T Television New Zealand: Balancing between commercial and social objectives C A S E N I N E From greenï ¬ eld to graduates: University of the Sunshine Coast C A S E T E N Whole Foods Market, 2005: Will there be enough organic food to satisfy the C A S E E L E V E N growing demandRead MoreEthics of Information Communication Technology (Ict)27618 Words   |  111 Pagespro-active approaches in support of the less developed countries of the region. The objective of this paper is to compile: i. Information concerning ethical issues in the Asia-Pacific regarding: i. Digital Divide ii. Poverty iii. Piracy iv. Cybercrime v. Human Rights vi . Gender Equality Information on the initiatives and programmes undertaken at the local, national, regional, and international levels concerning the above matters; and Recommendations to overcome the challenges and issues raised. iiRead MoreTelecommunication Essay11645 Words   |  47 Pagesand receiver or transceiver. For example, a mobile phone is a transceiver. Telecommunication over a phone line is called point-to-point communication because it is between one transmitter and one receiver, telecommunication through radio broadcasts is called broadcast communication because it is between one powerful transmitter and numerous receivers. A collection of transmitters, receivers or transceivers that communicate with each other is known as a network. Digital networks may consist of one orRead MoreEthical and Social Issues in Information Systems20165 Words   |  81 Pages These services equip each vehicle or person they are monitoring with a tracking device using global positioning system (GPS) technology. GPS is a navigation system operated by the U.S. Department of Defense based on satellites that continually broadcast their position, time, and date. GPS receivers on the ground, which can be attached to vehicles, cell phones, or other equipment, use information from the satellite signals to calculate their own locations. Cell phones are now equipped with GPS. TheRead MoreBusiness in Singapore30736 Words   |  123 Pagesat the heart of Asia, Singapore is sitting at the centre of business opportunities. Having the four key attributes - Trust, Knowledge, Connected and Life, Singapore is being positioned as an ideal ci ty to Work, Live and Play. Singapore was ranked first in Mercer’s Quality of Living Survey 2009. ii. Working in Singapore Singapore has a capitalised mixed economy. Having strong international trade links, Singapore possesses one of the most open economies for international trade and investment. SingaporeRead MoreContemporary Issues in Management Accounting211377 Words   |  846 PagesPress in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York ß Oxford University Press 2006 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2006 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permittedRead MoreOnline Banking42019 Words   |  169 Pagese-commerce 6 Any other matter, which the Working Group may think as of relevance to Internet banking in India. 1.3 Approach of the Group 1.3.1 The first meeting of the Working Group was held on July 19, 2000. It was decided that members of both Working Group and Operational Group would participate in all meetings and deliberations. The Group, in its first meeting identified the broad parameters within which it would focus its deliberations. 1.3.2 The Group agreed that Internet banking is a part ofRead MoreFundamentals of Hrm263904 Words   |  1056 PagesEmployee Benefits 286 Ensuring a Safe and Healthy Work Environment 312 PART 6 Chapter 14 LABOR–MANAGEMENT ENVIRONMENTS Understanding Labor Relations and Collective Bargaining 340 Endnotes 367 Glossary 389 Company Index 395 Subject Index 398 v Contents PART 1 UNDERSTANDING HRM Chapter 1 The Dynamic Environment of HRM 2 Learning Outcomes 2 Introduction 4 5 Understanding Cultural Environments 4 The Changing World of Technology What Is a Knowledge Worker? 6 How Technology Affects HRM Practices